CHAPTER 16.7 - 16.11
Tujuan :- Mengetahui apa itu pemisahan ion dengan pengendapan fraksional
- Mengetahui pengaruh ion senama dan kelarutan
- Mengetahui Ph dan kelarutan
- Mengetahui kesetimbangan ion komleks dan kelarutan
- Mengetahui Penerapan Prinsip Hasil Kali Kelarutan untuk Analisis Kualitatif
- Mengetahui apa itu pemisahan ion dengan pengendapan fraksional
- Mengetahui pengaruh ion senama dan kelarutan
- Mengetahui Ph dan kelarutan
- Mengetahui kesetimbangan ion komleks dan kelarutan
- Mengetahui Penerapan Prinsip Hasil Kali Kelarutan untuk Analisis Kualitatif
Alat Dan Bahan :
- Reed Switch
berfungsi sebagai sensor pendetesi adanya medan magnet
- Resistor
berfungsi sebagai penghambat arus rangkaian
- Logicstate
Sebagai pemberi kondisi,jika diberi logika1 maka sensor aktif sedangkan logika 0 sensor tidak aktif.
- Power
Sebagai sumber tegangan
- Ground
- Transistor
berfungsi sebagai switch
- Led
Sebagai indikator adanya arus yang mengalir.
- Speaker
Sebagai indikator adanya arus yang mengalir.
- Reed Switch
- Resistor
- Logicstate
- Power
- Ground
- Transistor
berfungsi sebagai switch
- Led
Sebagai indikator adanya arus yang mengalir.
- Speaker
Dasar Teori :
16.7 Pemisahan Ion dengan Pengendapan Fraksional
Dalam analisis kimia, kadang-kadang diinginkan untuk menghilangkan satu jenis ion dari larutan dengan presipitasi sambil meninggalkan ion lain dalam larutan. Sebagai contoh, penambahan ion sulfat ke larutan yang mengandung ion kalium dan barium menyebabkan BaSO4 mengendap, sehingga menghilangkan sebagian besar ion Ba21 dari larutan. "Produk" lainnya, K2SO4, larut dan akan tetap dalam larutan. Endapan BaSO4 dapat dipisahkan dari larutan dengan filtrasi.
16.8 Pengaruh Ion Senama dan Kelarutan
Dalam Bagian 16.2 kita membahas efek ion bersama pada ionisasi asam dan basa. Di sini kita akan memeriksa hubungan antara efek ion umum dan kelarutan.
16.9 pH dan Kelarutan
Kelarutan sebagian besar zat juga tergantung pada pH larutan. Pertimbangkan kesetimbangan kelarutan magnesium hidroksida:
Mg(OH)₂(s) ⇋ Mg²⁺(aq) + 2OH⁻(aq)
Menambahkan ion OH⁻ (meningkatkan pH) menggeser kesetimbangan dari kanan ke kiri, sehingga menurunkan kelarutan Mg(OH)₂. (Ini adalah contoh lain dari efek ion umum.) Sebaliknya, menambahkan ion H⁺ (menurunkan pH) menggeser kesetimbangan dari kiri ke kanan, dan kelarutan Mg(OH)₂ meningkat. Dengan demikian, basa yang tidak larut cenderung larut dalam larutan asam. Demikian pula, asam tak larut cenderung larut dalam larutan basa.
Untuk mengeksplorasi pengaruh kuantitatif pH terhadap kelarutan Mg(OH)², pertama-tama dihitung pH larutan Mg(OH)² jenuh. Dapat ditulis
Ksp = [Mg²⁺][OH⁻]²=1,2 X 10⁻¹¹
Misalkan s adalah kelarutan molar dari Mg(OH)₂. Melanjutkan seperti pada Contoh 16.9,
Oleh karena itu, pada kesetimbangan,
Dalam medium dengan pH kurang dari 10,45, kelarutan Mg(OH)₂ akan meningkat. Ini mengikuti dari fakta bahwa pH yang lebih rendah menunjukkan [H⁺] yang lebih tinggi dan dengan demikian [OH⁻] yang lebih rendah, seperti yang diharapkan dari Kw=[H⁺][OH⁻]. Akibatnya, [Mg²⁺] naik untuk mempertahankan kondisi kesetimbangan, dan lebih banyak Mg(OH)₂ terlarut. Proses pelarutan dan pengaruh ion H⁺ berlebih dapat diringkas sebagai berikut:
Jika pH medium lebih tinggi dari 10,45, [OH⁻] akan lebih tinggi dan kelarutan Mg(OH)₂ akan menurun karena efek ion bersama (OH⁻).
PH juga mempengaruhi kelarutan garam yang mengandung anion basa. Misalnya, kesetimbangan kelarutan untuk BaF₂ adalah
BaF₂(s) ⇋ Ba²⁺(aq) + 2F⁻(aq)
dan
Ksp = [Ba²⁺][F⁻]²
Dalam medium asam, peningkatan [H⁺] akan menggeser kesetimbangan berikut dari kiri ke kanan:
H⁺(aq) + 2F⁻(aq) ⇋ HF(aq)
Saat [F⁻] menurun, [Ba²⁺] harus meningkat untuk menjaga kondisi ekuilibrium. Jadi, lebih banyak BaF₂ terlarut. Proses pelarutan dan pengaruh pH terhadap kelarutan BaF₂ dapat diringkas sebagai berikut:
Kelarutan garam yang mengandung anion yang tidak terhidrolisis tidak dipengaruhi oleh pH. Contoh anion tersebut adalah Cl₂, Br₂, dan I₂.
Contoh 16.13 dan 16.14 membahas pengaruh pH pada kelarutan.
Contoh 16.13
Manakah dari senyawa berikut yang akan lebih larut dalam larutan asam daripada dalam air: (a) CuS, (b) AgCl, (c) PbSO₄?
Strategi
Dalam setiap kasus, tuliskan reaksi disosiasi garam ke dalam kation dan anionnya. Kation tidak akan berinteraksi dengan ion H⁺ karena keduanya memiliki muatan positif. Anion akan bertindak sebagai akseptor proton hanya jika anion merupakan basa konjugasi dari asam lemah. Bagaimana penghilangan anion mempengaruhi kelarutan garam?
Penyelesaian
(a) Kesetimbangan kelarutan untuk CuS adalah
CuS(s) ⇋ Cu²⁺(aq) + S²⁻(aq)
Ion sulfida adalah basa konjugasi dari asam lemah HS⁻. Oleh karena itu, ion S²⁻ bereaksi dengan ion H⁺ sebagai berikut:
S²⁻(aq) + H⁺(aq) → HS⁻(aq)
Reaksi ini menghilangkan ion S²⁻ dari larutan. Menurut prinsip Le Châtelier, kesetimbangan akan bergeser ke kanan untuk menggantikan beberapa ion S²⁻ yang dihilangkan, sehingga meningkatkan kelarutan CuS.
(b) Ekuilibrium kelarutan adalah
AgCl(s) ⇋ Ag⁺(aq) + Cl⁼(aq)
Karena Cl⁻ adalah basa konjugasi dari asam kuat (HCl), kelarutan AgCl tidak dipengaruhi oleh larutan asam.
(c) Ekuilibrium kelarutan untuk PbSO₄ adalah
PbSO₄(s) ⇋ Pb²⁺(aq) + SO₄²⁻(aq)
Ion sulfat adalah basa lemah karena merupakan basa konjugasi dari asam lemah HSO₄⁻. Oleh karena itu, ion SO₄²⁻ bereaksi dengan ion H⁺ sebagai berikut:
SO₄²⁻(aq) + H⁺(aq) → HSO₄⁻(aq)
Reaksi ini menghilangkan ion SO₄²⁻ dari larutan. Menurut prinsip Le Châtelier, kesetimbangan akan bergeser ke kanan untuk menggantikan sebagian ion SO₄²⁻ yang dihilangkan, sehingga meningkatkan kelarutan PbSO₄.
Reaksi asam-basa Lewis terjadi ketika kation logam bergabung dengan basa Lewis menghasilkan pembentukan ion kompleks. Dengan demikian, dapat didefinisikan ion kompleks sebagai ion yang mengandung kation logam pusat yang terikat pada satu atau lebih molekul atau ion. Ion kompleks sangat penting bagi banyak proses kimia dan biologis. Di sini akan dibahas pengaruh pembentukan ion kompleks pada kelarutan. Dalam Bab 22 akan dibahas kimia ion kompleks secara lebih rinci.
Logam transisi memiliki kecenderungan tertentu membentuk ion kompleks karena memiliki subkulit d yang tidak terisi penuh. Sifat ini memungkinkannya untuk bertindak secara efektif sebagai asam Lewis dalam reaksi dengan banyak molekul atau ion yang berfungsi sebagai donor elektron, atau sebagai basa Lewis. Sebagai contoh, larutan kobalt (II) klorida berwarna merah muda karena adanya ion Co(H₂O)₆²⁺ (Gambar 16.10). Ketika HCl ditambahkan, larutan menjadi biru sebagai hasil dari pembentukan ion kompleks CoCl₄²⁻:
Co²⁺(aq) + 4Cl⁻(aq) ⇋ CoCl₄²⁻(aq)
Tembaga (II) sulfat (CuSO₄) larut dalam air menghasilkan larutan biru. Ion tembaga (II) terhidrasi bertanggung jawab atas warna ini; banyak sulfat lainnya (Na₂SO₄, misalnya) tidak berwarna. Dengan menambahkan beberapa tetes larutan amonia pekat ke larutan CuSO₄ menyebabkan pembentukan endapan biru muda, tembaga (II) hidroksida:
Cu²⁺(aq) + 2OH⁻(aq) ⇋ Cu(OH)₂(s)
Ion OH⁻ disuplai oleh larutan amonia. Jika lebih banyak NH₃ ditambahkan, endapan biru larut kembali menghasilkan larutan biru tua yang indah, kali ini karena pembentukan ion kompleks Cu(NH₃)₄²⁺ (Gambar 16.11):
Cu(OH)₂(s) + 4NH₃(aq) ⇋ Cu(NH₃)₄²⁺(aq) + 2OH⁻(aq)
Dengan demikian, pembentukan ion kompleks Cu(NH₃)₄²⁺ meningkatkan kelarutan Cu(OH)₂.
Ukuran kecenderungan ion logam membentuk ion kompleks ditentukan oleh konstanta pembentukan Kf (juga disebut konstanta stabilitas), yang merupakan konstanta kesetimbangan untuk pembentukan ion kompleks. Semakin besar Kf, semakin stabil ion kompleks tersebut. Tabel 16.4 mencantumkan konstanta pembentukan sejumlah ion kompleks.
Pembentukan ion Cu(NH₃)₄²⁺ dapat dinyatakan sebagai
Cu²⁺(aq) + 4NH₃(aq) ⇋ Cu(NH₃)₄²⁺(aq)
yang merupakan konstanta pembentukannya
Nilai Kf yang sangat besar dalam hal ini menunjukkan bahwa ion kompleks cukup stabil dalam larutan dan menyebabkan konsentrasi ion tembaga (II) yang sangat rendah pada kesetimbangan.
Contoh 16.15
Sebanyak 0,20 mol CuSO₄ ditambahkan ke satu liter larutan 1,20 M NH₃. Berapa konsentrasi ion Cu²⁺ pada kesetimbangan?
Strategi
Penambahan CuSO₄ ke dalam larutan NH₃ menghasilkan pembentukan ion kompleks
Cu²⁺(aq) + 4NH₃(aq) ⇋ Cu(NH₃)₄²⁺(aq)
Dari Tabel 16.4 dapat dilihat bahwa konstanta pembentukan (Kf) untuk reaksi ini sangat besar; oleh karena itu, reaksinya kebanyakan mengarah ke kanan. Pada kesetimbangan, konsentrasi Cu²⁺ akan sangat kecil. Sebagai pendekatan yang baik, dapat diasumsikan bahwa pada dasarnya semua ion Cu²⁺ yang terlarut berakhir sebagai ion Cu(NH₃)₄²⁺. Berapa mol NH₃ yang akan bereaksi dengan 0,20 mol Cu²⁺? Berapa mol Cu(NH₃)₄²⁺ yang akan dihasilkan? Sejumlah kecil Cu²⁺ akan hadir pada kesetimbangan. Tuliskan ekspresi Kf untuk kesetimbangan sebelumnya untuk mencari [Cu²⁺].
Penyelesaian
Jumlah NH₃ yang dikonsumsi dalam pembentukan ion kompleks adalah 4 x 0,20 mol, atau 0,80 mol. (Perhatikan bahwa 0,20 mol Cu²⁺ awalnya hadir dalam larutan dan empat molekul NH₃ diperlukan untuk membentuk ion kompleks dengan satu ion Cu²⁺.) Oleh karena itu, konsentrasi NH₃ pada kesetimbangan adalah (1,20 - 0,80) mol/L larutan atau 0,40 M, dan bahwa Cu(NH₃)₄²⁺ adalah 0,20 mol/L larutan atau 0,20 M, sama dengan konsentrasi awal Cu²⁺. [Ada perbandingan mol 1: 1 antara Cu²⁺ dan Cu(NH₃)₄²⁺.] Karena Cu(NH₃)₄²⁺ tidak terdisosiasi sedikit, disebut konsentrasi Cu²⁺ pada kesetimbangan x dan tuliskan
5 x 10¹³=0,2/x(0,4)⁴
Dengan menyelesaikan x dan mengingat bahwa volume larutan adalah 1 L, didapatkan
x = [Cu²⁺]=1,6 x 10¹³M
Periksa
Nilai [Cu] yang kecil pada kesetimbangan, dibandingkan dengan 0,20 M, tentu membenarkan perkiraan ini.
16.11 Penerapan Prinsip Hasil Kali Kelarutan untuk Analisis Kualitatif
Dalam bagian 4.6, telah dibahas prinsip analisis gravimetri, dimana jumlah ion diukur dalam sampel yang belum diketahui. Di sini akan dibahas secara singkat analisis kualitatif, penentuan jenis ion yang ada dalam larutan. Pembahasan akan difokuskan pada kation.
Ada sekitar 20 kation umum yang dapat dianalisis dengan mudah dalam larutan air. Kation-kation ini dapat dibagi menjadi lima kelompok sesuai dengan produk kelarutan garam tak larutnya (Tabel 16.5). Karena larutan yang tidak diketahui dapat mengandung dari satu sampai semua 20 ion, analisis apapun harus dilakukan secara sistematis dari kelompok 1 sampai kelompok 5. Mari kita pertimbangkan prosedur umum untuk memisahkan 20 ion ini dengan menambahkan reagen pengendap ke larutan yang tidak diketahui.
- Kation Golongan 1. Ketika HCl encer ditambahkan ke larutan yang tidak diketahui, hanya ion Ag⁺, Hg₂²⁺, dan Pb²⁺ yang mengendap sebagai klorida yang tidak larut. Ion lain, yang kloridanya larut, tetap berada dalam larutan.
- Kation Golongan 2. Setelah endapan klorida dihilangkan dengan filtrasi, hidrogen sulfida direaksikan dengan larutan asam yang tidak diketahui. Dalam kondisi ini, konsentrasi ion S²⁻ dalam larutan dapat diabaikan. Oleh karena itu, pengendapan logam sulfida paling baik direpresentasikan sebagai M²⁺(aq) + H₂S(aq) ⇋ MS(s) + 2H⁺(aq). Menambahkan asam ke dalam larutan akan menggeser kesetimbangan ini ke kiri sehingga hanya logam sulfida yang paling tidak larut, yaitu logam dengan nilai Ksp terkecil, yang akan mengendap keluar dari larutan. Ini adalah Bi₂S₃, CdS, CuS, HgS, dan SnS (lihat Tabel 16.5).
- Kation Golongan 3. Pada tahap ini, natrium hidroksida ditambahkan ke larutan untuk membuatnya menjadi basa. Dalam larutan basa, kesetimbangan di atas bergeser ke kanan. Oleh karena itu, sulfida yang lebih larut (CoS, FeS, MnS, NiS, ZnS) sekarang mengendap dari larutan. Perhatikan bahwa ion Al³⁺ dan Cr³⁺ sebenarnya mengendap sebagai hidroksida Al(OH)₃ dan Cr(OH)₃, bukan sebagai sulfida, karena hidroksida kurang larut. Larutannya kemudian disaring untuk menghilangkan sulfida dan hidroksida yang tidak larut.
- Kation Golongan 4. Setelah semua kation golongan 1, 2, dan 3 dikeluarkan dari larutan, natrium karbonat ditambahkan ke larutan basa untuk mengendapkan ion Ba²⁺, Ca²⁺, dan Sr²⁺ sebagai BaCO₃, CaCO₃, dan SrCO₃. Endapan ini juga dikeluarkan dari larutan dengan filtrasi.
- Kation Golongan 5. Pada tahap ini, satu-satunya kation yang mungkin tersisa dalam larutan adalah Na⁺, K⁺, dan NH₄⁺. Keberadaan NH₄⁺ dapat ditentukan dengan menambahkan natrium hidroksida: NaOH(aq) + NH₄⁺(aq) → Na⁺(aq) + H₂O(l) + NH₃(g) Gas amonia dideteksi baik dengan mencatat bau khasnya atau dengan mengamati selembar kertas lakmus merah basah yang membiru ketika ditempatkan di atas (tidak bersentuhan dengan) larutan. Untuk memastikan keberadaan ion Na1 dan K1, kita biasanya menggunakan uji nyala api, sebagai berikut: Sepotong kawat platina (dipilih karena platina bersifat inert) dibasahi dengan larutan dan kemudian dipegang di atas api pembakar Bunsen. Setiap jenis ion logam memberikan warna yang khas jika dipanaskan dengan cara ini. Misalnya, warna yang dipancarkan oleh ion Na1 adalah kuning, warna ion K1 adalah ungu, dan warna ion Cu21 adalah hijau (Gambar 16.13).
Gambar 16.13 Kiri ke kanan: Warna nyala litium, natrium, kalium, dan tembaga. |
Gambar 16.14 merangkum skema ini untuk memisahkan ion logam.
Gambar 16.14 Diagram alir untuk pemisahan kation dalam analisis kualitatif. |
Dua poin tentang analisis kualitatif harus disebutkan. Pertama, pemisahan kation menjadi kelompok dilakukan selektif mungkin; artinya, anion yang ditambahkan sebagai reagen harus sedemikian rupa sehingga akan mengendapkan jenis kation yang paling sedikit. Misalnya, semua kation dalam golongan 1 juga membentuk sulfida yang tidak larut. Jadi, jika H₂S direaksikan dengan larutan di awal, sebanyak tujuh sulfida yang berbeda mungkin mengendap keluar dari larutan (sulfida golongan 1 dan golongan 2), hasil yang tidak diinginkan. Kedua, penghilangan kation pada setiap langkah harus dilakukan selengkap mungkin. Misalnya, jika kita tidak menambahkan cukup HCl ke larutan yang tidak diketahui untuk menghilangkan semua kation golongan 1, mereka akan mengendap dengan kation golongan 2 sebagai sulfida yang tidak dapat larut, mengganggu analisis kimia lebih lanjut dan mengarah pada kesimpulan yang salah.
Rangkaian :
Prinsip kerja rangkaian :
Prinsip dasar kerja sensor ini sangatlah sederhana, yaitu apabila bagian permukaan dari sensor terkena medan magnet maka dua buah kontak plate tipis yang terdapat dibagian dalam sensor akan tertarik oleh medan magnet, sehingga kontak akan terhubung. maka arus yang dari power akan mengalir melewati sensor reed switch dan menuju resistor dan basis transistor. Transistor menjadi aktif dan menyebabkan arus yang tadinya tidak mengalir ke led menuju kolektor dan emitor transistor terus ke speaker menjadi mengalir dan menyebabkan led dan speaker aktif.
Video Pembelajaran :
pH dan Kelarutan
Link Dwonload :
Dwonload Materi Disini
Dwonload Video Materi Kesetimbangan Ion kompleks dan kelarutan Disini
Dwonload Video Materi Ph Dan Kelarutan Disini
Simulasi Rangkaian Proteus Disini
Datasheet Sensor Reed Switch download
Library Proteus Sensor Reed Switch Disini
Datasheet Sensor Reed Switch download
Library Proteus Sensor Reed Switch Disini
Tidak ada komentar:
Posting Komentar